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The bright yellow mycotoxins, brevianamide A (1) and B (2), 
were isolated from culture extracts of Penicillium brevicompactum 
almost two decades ago by Birch and Wright.1 The structure 
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originally proposed by Birch for brevianamide A, the major 
metabolite, was later confirmed by single-crystal X-ray analysis2 

of 5-bromo-brevianamide A; this study elucidated both the relative 
and absolute configuration of 1 as that depicted. The structure 
of brevianamide B (the minor metabolite) was ascertained'0 by 
the reduction of 1 to deoxybrevianamide A (3) and (the completely 
stereoselective) oxidation of 3 to brevianamide B (Scheme I). This 
structure has recently been rigorously confirmed by total synthesis.3 

In the course of securing the identity3 of the synthetic and natural 
materials, it was found that synthetic 2 and natural 2, derived 
directly from the culture extracts (and not via semisynthetic 
conversion from 1), were of the opposite absolute configuration. 
Through a careful study of the chiroptical properties of naturally 
derived 1 and 2 as well as synthetic3 and semisynthetic1' 2, we 
now report that Penicillium brevicompactum constructs bre­
vianamide A and brevianamide B in optically pure form but as 
enantiomorphs with respect to the bicyclo[2.2.2] ring system. 
These findings have significant biogenetic as well as possible 
genetic implications for the producing organisms. 

On the basis of the results of feeding experiments with 14C-
labeled precursors' Birch postulated that cyclo-L-Trp-L-Pro 
(brevianamide F, 4, Scheme II) is prenylated with dimethallyl 
pyrophosphate to furnish deoxybrevianamide E (5). Two-electron 
oxidation of the Trp moiety and enolization (Pro) would then give 
the achiral diene 6 that was postulated1 to suffer intramolecular 
[4 + 2] cycloaddition to furnish the hexacyclic compound 7. 
Oxidation and pinacol-type rearrangement of the diastereomeric 
hydroxyindolenines 8 and 9 would provide the spiroindoxyls, 
brevianamide A and B. It is significant that if the intermediacy 
of 7 is correct, the major metabolite brevianamide A would result 
from oxidation on the more hindered face of 7 (providing 8), and 
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the minor metabolite brevianamide B would result from oxidation 
on the least hindered face of 7 (via 9). 

As shown in Figure 1, the CD spectra of natural 1, natural 2, 
synthetic 2, and semisynthetic 2 (derived from natural 1) clearly 
show that semisynthetic brevianamide B and synthetic brevian­
amide B have the same absolute configuration (with respect to 
the bicyclo[2.2.2]piperazinedione nucleus) as brevianamide A. 
Natural brevianamide B on the other hand, is the enantiomorph 
of these substances. The cotton effect at 200-250 nm is due to 
an n,ir* transition of the amide bonds and is a reliably diagnostic 
method to discern the absolute stereochemistry of bicyclic pi-
perazinediones.4 It is further quite interesting, that the absorption 
between 250 and 450 nm gives an indication of the absolute 

(4) (a) Herscheid, J. D. M.; Tijhuis, M. W.; Noorkik, J. H.; Ottenheijm, 
H. C. J. J. Am. Chem. Soc. 1979,101, 1159 and references cited therein, (b) 
Nagarajan, R.; Woody, R. W. J. Am. Chem. Soc. 1973, 95, 7212. 
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Figure 1. CD spectra of 1 and 2 recorded in trifluoroethanol between 
200 and 250 nm and in 2.5% formic acid/dichloromethane between 250 
and 450 nm. 

stereochemistry at the spiroindoxyl stereogenic center which is 
(R)- for brevianamide A and (R)- for natural brevianamide B. 
The CD spectra between 250 and 450 nm for these two substances 
are virtually identical even though they are diastereomers be­
longing to unique enantiomorphic groups. The UV spectra of these 
substances show an absorbtion at ~400 nm which is attributable 
to the indoxyl chromophore.1 

If the Birch biosynthetic pathway1 is correct with respect to 
the structures of intermediates 5-7, our results require that (1) 
both enantiomorphs of 7 are synthesized by Penicillium brevi-
compactum in unequal amounts and either (2) two distinct ox­
idases having unique enantioselectivity for (+)-7 and (-)-! must 
also have opposite diastereoselectivity delivering oxygen from the 
more and less hindered faces of 7 (furnishing 8 and 9, respectively) 
resulting in optically pure 1 and 2 or (2) that a single oxidase 
recognizes only the binding orientation of the indole moiety, 
delivering oxygen from the (/?)-face of each enantiomer of 7. The 
contention that the oxidation of 7 to 1 or 2 is enzyme-mediated 
is supported by the following observation. An authentic, synthetic 
sample of the proposed shunt metabolite (-)-7 was prepared by 
removal6 of the p-methoxybenzyl group from N-9 of the corre­
sponding synthetic3,7 derivative. Allowing this compound to stand 
in ethyl acetate solution exposed to air for several days resulted 
in a myriad of decomposition products of which no identifiable 
trace of either 1 or 2 could be detected. However, m-CPBA 
oxidation of (-)-! followed by exposure of the incipient hydrox-
yindolenine to NaOMe in methanol gave in high yield (exclusively) 
(-)-brevianamide B. Thus, unlike deoxybrevianamide A (3) which 
autoxidizes1 to (-)-2, compound 7 does not autoxidize to either 
1 or 2 implicating a specific, enzyme-mediated process. Attempts 
to identify 7 in culture extracts of Penicillium brevicompactum 
were completely unsuccessful. While this does not rule out the 
possibility that 7 is a short-lived, tightly enzyme-bound inter­
mediate that is not excreted into the culture medium, further 
experiments are required to prove the validity of this reasonable 
biosynthetic scheme. The relative proportions of brevianamide 
A and B produced suggests that 7 is produced in partially racemic 
form. The failure to detect 7, particularly (+)-7 which precedes 
2, supports the notion that both enantiomorphic precursors to 1 
and 2 are produced in unequal amounts and are completely 
consumed by the oxidase(s). An interesting mystery that remains 
is to elucidate the mechanism for the formation of the two en-

(5) Specific optical rotations for these substances further support the CD 
data: synthetic 2 [a]D

25 = -124" (c 0.77, CH2Cl2/2.5% HCO2H); natural 
2 (from Penicillium brevicompactum directly) [a]D

25 = +124° (C 0.77, 
CH2Cl2/2.5% HCO2H); semisynthetic 2 (derived from 1 via oxidation of 3) 
[a]D

25 = -124° (c 0.77, CH2Cl2/2.5% HCO2H). The synthetic material (2) 
was shown to be >99% ee. 

(6) Williams, R. M.; Kwast, E. Tetrahedron Lett. 1989, 30, 451. 
(7) Reference 3, compound no. 16. 

antiomorphic series, regardless of the validity of structure 7. 
The above facts lead to the conclusion that Penicillium bre­

vicompactum has evolved genes encoding for enantio- and 
diastereodivergent pathways specifically for the biosynthetic 
production of 1 and 2 regardless of the structural uncertainties 
of the intermediates following 4. Planar, achiral intermediate 6 
would nicely accommodate the occurrence of the two enantiomeric 
series; a single oxidase displaying complete (7?)-facial selectivity 
toward the indole, or two distinct enantio- and diastereoselective 
oxidases, would then effect a resolution producing the two optically 
pure diasteromers 1 and 2. Experiments aimed at validating the 
intermediacy of 5, 6, and 7 as shunt metabolites and elucidating 
the nature of the oxidase(s) are in progress in these laboratories. 
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General acyl-CoA dehydrogenase (GACD) is a flavin (FAD) 
dependent enzyme which catalyzes the first step of /3-oxidation 
converting a straight chain fatty acyl thioester substrate 1 to the 
corresponding a,/3-enolyl-CoA product 2.1 Studies of this de-
saturation step are of particular mechanistic interest, since it 
involves the rupture of two kinetically stable C-H bonds. Evidence 
has accumulated supporting a CQ deprotonation as the initial step 
of this dehydrogenation.1 However, the mechanism of the sub­
sequent transfer of reducing equivalents from the carbanion 3 to 
the oxidized flavin is still disputable.1,2 The commonly accepted 
route consists of C13-H expulsion from 3 and then hydride addition 
to FAD yielding, in a net trans elimination, the a,/3-enolyl-CoA 
2 and the fully reduced flavin (eq I).1 While this mechanism 
appears to be quite feasible, it should be kept in mind that oxidized 
flavin is a poor hydride acceptor.3 Oxidation of the carbanion 
3 via a one-electron route forming a transient radical species 4 
and a semiquinone flavin is a compelling alternative (eq 2).ld"3 

In fact, formation of flavin radical upon addition of substrate to 
acyl-CoA dehydrogenase has indeed been noted.4'5 Several recent 
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(2) (a) Massey, V.; Ghisla, S. In Biological Oxidations, 34, Mosbach 
Colloquim; Sund, H„ Ullrich, V., Eds.; Springer: Berlin, 1983; p 114. (b) 
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